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Effectiveness of the soil conditioning 
index as a carbon management tool in the 
southeastern USA based on comparison 
with EPIC
D.A. Abrahamson, M.L. Norfleet, H.J. Causarano, J.R. Williams, J.N. Shaw, and A.J. Franzluebbers

Abstract: Models are being developed and utilized by scientists and government agencies 
to quantify the potential for carbon storage in soil. The Environmental Policy Integrated 
Climate (EPIC) v. 3060 model is a process-based model requiring detailed inputs. The 
soil conditioning index (SCI) is a simpler tool to predict relative change in soil organic  
carbon (SOC) using table values for three management components (i.e., organic matter, field 
operations, and erosion) within the framework of the Revised Universal Soil Loss Equation 2 
model. Our objective was to determine whether SOC sequestration from no-tillage cropping 
systems in the southeastern USA could be simply predicted with SCI compared with detailed 
simulations using EPIC. Four management systems were evaluated: (1) cotton (Gossypium 
hirsutum L.) with conventional tillage, (2) cotton with no tillage, (3) corn (Zea mays L.)– 
cotton rotation with no tillage, and (4) bermudagrass (Cynodon dactylon L.)–corn–cotton  
rotation with no tillage. All no-tillage systems used wheat (Triticum aestivum L.) as a cover crop. 
Simulated SOC sequestration with EPIC was 0.46 ± 0.06 Mg ha-1 yr-1 (410 ± 51 lb ac-1 yr-1) 
under the three no-tillage management systems and -0.03 Mg ha-1 yr-1 (-30 lb ac-1 yr-1) under 
conventional tillage. The SCI also predicted a strong difference in SOC between conven-
tional and no tillage. Differences in SOC sequestration among crop rotations were not readily 
apparent with EPIC but were with SCI. Predictions of SOC sequestration with SCI were 
comparable to those with EPIC but not necessarily in a linear manner as previously suggested. 
The SCI appears to be a valuable method for making reasonable, cost-effective estimates of 
potential changes in SOC with adoption of conservation management in the southeastern 
USA, although validations under actual field conditions are still needed.
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Carbon sequestration in soil has emerged 
as a technology with significant potential 
for stabilizing atmospheric concentra-
tions of greenhouse gases at nonthreat-
ening levels (Izaurralde et al. 2006). 
Estimates of long-term soil organic carbon 
(SOC) storage in agricultural cropping sys-
tems are needed to evaluate the effectiveness 
of different management systems across a 
wide range of soil, crop, and climate condi-
tions (Causarano et al. 2006).

The southeastern USA is a warm, humid 
region conducive to high C fixation in plant 
biomass but is also known for high rates of 
decomposition (Franzluebbers 2005). The 
southeastern USA can be defined as an area 
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from eastern Texas to Virginia and southwards 
(figure 1). The impact of agricultural manage-
ment practices on SOC will vary depending 
on climatic conditions that influence plant 
and soil processes driving soil organic mat-
ter dynamics (Ogle et al. 2005). Comparing 
regions of North America, the effect of con-
servation tillage on SOC sequestration was 
greatest in the central and southeastern USA 
and lowest in the northeastern USA and 
eastern Canada (Franzluebbers and Follett 
2005). In the southeastern USA, SOC 
sequestration was most significant with for-
age management systems, cover cropping, 
manure application, and conservation tillage 
(Franzluebbers 2005).

Agronomic and environmental benefits of 
conservation tillage may be greatly enhanced 
by diverse crop rotations and cover cropping 
(Reeves 1994; Lal 2003). In addition, several 
studies have shown how conservation till-
age can improve yield and crop water use 
efficiency (WUE) and can reduce water run-
off and soil erosion (Unger and Vigil 1998; 
Norwood 1999; Hatfield et al. 2001; Reddy 
et al. 2004; Truman et al. 2005). Conservation 
tillage, winter cover cropping, crop rotation, 
and residue management improve soil qual-
ity, which increases the availability of plant 
nutrients, conserves soil moisture, improves 
infiltration, and reduces erosion, runoff, and 
surface crusting.

Sandy soils, such as those typical of the 
Coastal Plain region, are naturally low in 
SOC. Coarse-textured soils provide less  
protection of SOC as residues decompose 
and exhibit higher decomposition rates than 
fine-textured soils (Franzluebbers 1999; Krull 
et al. 2001). Before modern conservation till-
age technology was available, increasing SOC 
was believed to be nearly impossible in sandy 
Coastal Plain soils. However, on a sandy soil 
in the South Carolina Coastal Plain, long-
term conservation tillage of row crops was 
shown to be a viable method for increasing 
SOC (Hunt, et al. 1996). On coarse-tex-
tured soil in the Coastal Plain of Alabama, 
SOC sequestration was 6 to 10 Mg ha-1 (2.7 
to 4.5 ton ac-1) with high-residue-produc-
ing conservation systems and dairy manure 
application for three years, which was much 
greater than expected for degraded soils of 
the southeastern USA (Terra et al. 2005). 
Under forage management systems on 
medium-textured soils in Virginia, Conant 
et al. (2003) found that SOC sequestration 
averaged 0.41 Mg C ha-1 yr-1 (366 lb ac-1  
yr-1). In the Georgia Piedmont, par-
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Figure 1
Location of the three sites within the Blackland Prairie, Coastal Plain, and Southern Piedmont 
major land resource areas in the southeastern USA.
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ticulate and biologically active soil C 
fractions increased in all forage management  
systems, but they increased more in grazed 
than in ungrazed systems because of the 
return of feces to the soil (Franzluebbers and 
Stuedemann 2003).

The amount of SOC sequestered in a field 
or region is costly to measure and monitor. 
Protocols are still being developed, making 
it difficult to base policies directly on envi-
ronmental performance (Feng et al. 2004). 
There are relatively few long-term manage-
ment studies within the southeastern USA 
that holistically address SOC sequestration 
(i.e., measuring plant and soil responses over 
an extended period of time). Simulation 
modeling can be an efficient method for 
estimating management effects on soil  
properties for a wide range of soil and climatic 
conditions (Williams et al. 1984). However, 
the accuracy and sensitivity of models to a 
variety of environmental and managerial  
factors needs to be assessed.

The Erosion Productivity-Impact Calculator 
(renamed the Environmental Policy 
Integrated Climate, EPIC) model compre-
hensively simulates important soil, crop, and 
environmental processes relevant to eco-
system functioning (Williams et al. 1984; 

Williams 1990; Gassman et al. 2004). EPIC 
was recently updated to include a C- and 
N-transformation submodel with concepts 
and equations derived from the CENTURY 
model (Izaurralde et al. 2006). The revised 
EPIC model (v. 3060) was tested against 
field data from a six-year experiment at five 
sites in the Great Plains USA and from a  
61-year agronomic experiment near Breton, 
Canada. The model accounted for 91% of 
the variability in SOC at Breton, but it over-
estimated SOC at the Great Plains sites when 
initial SOC was low and underestimated 
SOC when initial SOC was high (Izaurralde 
et al. 2006).  After optimization of the humus 
fraction in the passive C pool, the model was 
able to simulate the observed decline in SOC 
with continuous conventional tillage and 
that of restored grassland areas at three loca-
tions in central Texas (Gassman et al. 2004). 
EPIC v. 3060 is process-based and requires 
extensive expertise, user time, and data 
requirements unique to specific locations, 
which can result in high-quality outputs of 
plant production characteristics and SOC 
changes with time that are especially useful 
for scientific investigators. Sufficient long-
term model projections of SOC and WUE 
based on various conservation management 

systems are currently not available in the 
southeastern USA.

The soil conditioning index was recently 
incorporated into the Revised Universal Soil 
Loss Equation (RUSLE2), a model contain-
ing both empirical and process-based science 
to predict erosion from rainfall and runoff 
(USDA NRCS, 2006). The USDA Natural 
Resource Conservation Service (NRCS) 
uses the soil conditioning index (SCI) to 
predict changes in SOC based on different 
agricultural management practices. The SCI 
is used to calculate payments to landowners 
enrolled in the USDA NRCS Conservation 
Security Program (Hubbs et al. 2002), which 
is currently making payments of $28.65 ha‑1 
yr-1 ($11.60 ac-1 yr-1) times a positive SCI 
value. The SCI is a relatively simple function 
of three components known to affect SOC: 
(1) organic material grown on or added to 
soil, (2) field operations that alter organic 
material placement in the soil profile and 
that stimulate organic matter breakdown, and  
(3) erosion that removes and sorts surface 
soil organic matter (from sheet, rill, or wind  
erosion but not from concentrated flow ero-
sion such as ephemeral or gully erosion) 
(USDA NRCS 2003).

Testing of the SCI has been limited,  
suggesting that research is greatly needed to 
document the potential success and deficiency 
of the model. The SCI is well-suited for its 
intended use in conservation planning because 
of its relatively simple, qualitative approach 
and indexed output (figure 2). The objectives 
of our study were to simulate long-term SOC, 
yield, and WUE under conventional and con-
servation management systems using EPIC 
v. 3060 in three major land resource areas 
(MLRAs) of the southeastern USA and to 
determine if SOC change predicted by EPIC 
was correlated with the simpler approach of 
SCI. The management systems represented 
a gradient of conservation management and 
crop diversity, which were expected to affect 
soil disturbance and C input.

Methods and Materials
Simulations were conducted for locations in 
the Blackland Prairie in eastern Texas, the 
Southern Piedmont in northern Georgia, 
and the Coastal Plain in South Carolina 
(figure 1). Soil properties at the three loca-
tions were obtained from the USDA NRCS 
SSURGO and STATSGO databases (Soil 
Survey Staff 2007) included with the EPIC 
model (table 1).
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Figure 2
Diagrams comparing the process-based approach of the EPIC soil organic carbon submodel 
(left) and the index approach of the soil conditioning index (SCI) (right).
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The Blackland Prairie site was located on 
a Houston Black clay (fine, smectitic, thermic 
Udic Haplusterts) near Temple, Texas, at 31°5' 
N, 97°35' W, elevation 210 m (689 ft). Grain 
sorghum (Sorghum bicolor [L.] Moench), cot-
ton, corn, small grains, and forage grasses are 

common in the MLRA. Annual precipita-
tion ranges from 500 to 1,150 mm (30 to 
45 in), annual temperature ranges from 17°C 
to 21°C (63°F to 70°F), and the growing  
season lasts 230 to 280 days.

The Coastal Plain site was located on a 

Norfolk loamy sand (fine-loamy, kaolinitic, 
thermic Typic Kandiudults) near McColl, 
SC at 34°67' N, 79°00' W, elevation 56 m 
(185 ft). Cotton, tobacco (Nicotiana tabacum 
L.), soybean (Glycine max [L.] Merr.), peach 
(Prunus persica [L.] Batsch), hay, wheat, and 
corn are common in this MLRA. Annual 
precipitation averages 1219 mm (48 in), 
annual temperature averages 23°C (74°F), 
and the growing season is 290 days.

The Southern Piedmont site was located 
on a Cecil sandy clay loam (fine, kaolin-
itic, thermic Typic Kanhapludults) near 
Watkinsville, GA at 33°54' N, 83°24' W, 
elevation 229 m (751 ft). Cotton, corn, small 
grains, and forage grasses are common in this 
region. Annual precipitation averages 1,143 
mm (45 in), annual temperature averages 
17°C (63°F), and the growing season lasts 
200 to 250 days.

EPIC v. 3060 without calibration was 
used to simulate yield, WUE, and SOC. 
Baseline data including soil series properties 
from the NRCS database, crop parameters, 
location-specific weather data, and manage-
ment operations were required to run the 
model. No adjustments to any parameters 
such as decomposition rates, physical crop 
characteristics, or a large variety of other 

Table 1
Selected initial soil parameters from the SSURGO database used for the 50-year simulations with the EPIC model.

	 Depth	 Bulk density	 Sand	 Silt	 	 Soil organic C
	 (m)	 (Mg m-3)	 (kg kg-1)	 (kg kg-1)	 pH	 (g kg-1)

Blackland Prairies (Houston black clay)
	0.01 to 0.18	 1.3	 0.07	 0.36	 8.0	 15
	0.18 to 0.48	 1.2	 0.05	 0.39	 8.3	 13
	0.48 to 1.0	 1.3	 0.06	 0.35	 8.0	 9
	1.0 to 1.5	 1.4	 0.06	 0.40	 8.3	 4
	1.5 to 2.0	 1.3	 0.07	 0.42	 8.2	 3

Coastal Plain (Norfolk loamy sand)
	0.01 to 0.18	 1.6	 0.76	 0.22	 4.9	 6
	0.18 to 0.48	 1.7	 0.55	 0.25	 4.7	 2
	0.48 to 1.0	 1.4	 0.56	 0.13	 4.6	 <1
	1.0 to 1.5	 1.3	 0.62	 0.12	 4.6	 1
	1.5 to 2.0	 1.3	 0.41	 0.24	 4.5	 <1

Southern Piedmont (Cecil sandy clay loam)
	0.01 to 0.18	 1.6	 0.68	 0.20	 5.5	 4
	0.18 to 0.28	 1.5	 0.55	 0.17	 5.0	 2
	0.28 to 1.2	 1.4	 0.18	 0.29	 5.0	 1
	1.2 to 2.0	 1.7	 0.45	 0.26	 4.5	 <1
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variables were made. Initialization of EPIC is 
usually not important for decadal-long simu-
lations, as the model equilibrates dynamically 
in the first few years when soil and climatic 
processes respond to management practices. 
EPIC estimates initial conditions, such as soil 
water content, if not provided. For example, 
we allowed EPIC to compute initial soil 
water content as a function of field capac-
ity and mean annual precipitation using the 
equation:

FFC = AAP / (AAP + e(9.043 - 0.002135 * AAP))

where FFC is fraction of field capacity and 
AAP is average annual precipitation (mm).

Four management systems in each MLRA 
were (1) monoculture cotton with conven-
tional tillage (CT), (2) cotton/wheat cover 
(within a year) under no tillage (NT), (3) 
corn/wheat cover (four-year)–cotton/wheat 
cover (four-year) rotation under NT, and  
(4) bermudagrass (Cynodon dactylon L.) 
pasture (five-year)–corn/wheat cover (five-
year)–cotton/wheat cover (five-year) under 
NT. Management characteristics can be 
found in table 2. Planting dates were from 
averages reported in USDA-NASS (1997). 
Fertilizer application to bermudagrass was 
based on a recommendation for the region 
(Dwight Fisher 2006). Climatic inputs were 
generated using WXGEN in the EPIC 
model (Williams and Sharpley 1990), based 
on long-term climatic conditions at weather 
stations near the three locations (NCDC 
2007). The potential heat unit threshold to 
simulate cotton yield was set at 2,800 in a 
standard simulation but was allowed to be 
lower (automatically set by the model) in a 
companion simulation to evaluate the effect 
of altered yield on SOC sequestration.

Yearly estimates of SOC (0 to 2 m depth), 
crop yield, and WUE were simulated by 
EPIC for a 50-year period. Water-use effi-
ciency (kg mm-1) was calculated as simulated 
yield (lint for cotton and grain for corn) 
divided by simulated evapotranspiration 
during the growing season (generally May to 
October for cotton and April to August for 
corn). Simulated estimates of yield and WUE 
within a MLRA and management system 
were averaged across years prior to analysis 
of variance. Simulated SOC estimates were 
regressed on year in each MLRA and man-
agement system to obtain a linear rate of 
change with time. Yearly estimates of SOC 
within a MLRA and management system 

were also fitted to a nonlinear exponen-
tial model to obtain total SOC sequestered  
during 50 years:

Yt = A + B (1 – e-k * t)

where Y is SOC sequestered (Mg ha-1) at 
time t (yr), A is initial SOC (Mg ha-1), B is 
potential SOC sequestration (Mg ha-1), and 
k is the nonlinear rate of SOC sequestration 
(yr-1).

The resultant single estimates for yield, 
WUE, and SOC for each MLRA and 
management system were used as indepen-
dent estimates in an analysis of variance 
that included MLRA as a blocking variable  
(n = 3) and management system as a response 
variable (n = 4). Significance among means 
with true replications was declared at P ≤ 
0.1. To test for potential interactions between 
MLRA and management system, despite not 
having replication of MLRA estimates, we 
used consecutive five-year mean slope val-
ues of SOC as pseudoreplications within the  
50-year evaluation period. Significance 
among means with pseudoreplications was 
declared at P ≤ 0.01.

Using the same management conditions 
as for EPIC simulations, SCI values were 
developed for a 50-year period for the four 
management scenarios and three MLRAs 
using RUSLE2 (USDA-NRCS, 2006).

The relationship between SOC seques-
tration predicted by EPIC and SCI was 
determined with linear regression (all 12 
paired estimates) and non-linear regression 
(excluding the NT bermudagrass-corn- 
cotton rotation, which deviated the most 
from the linear regression). General lin-
ear models were analyzed with SAS for 
Windows 9.1. Regressions were performed 
with SigmaPlot for Windows 8.02.

Results and Discussion
EPIC Simulations of Soil Organic Carbon. 
Organic C content within the surface 2 m of soil  
generally remained unchanged with time 
under CT and increased with time in all NT 
management systems (figure 3). Averaged 
across MLRAs, the rate of simulated SOC 
sequestration (Mg ha-1 yr-1) was greater under 
NT management systems than under CT 
(table 3). The total quantity of SOC seques-
tered during the 50 years of simulation was 
also greater under NT management systems 
(27.0 ± 7.7 Mg ha-1) than under CT (-1.5 
Mg ha-1). There was no statistical difference 

in the simulated rate of SOC sequestration 
or total amount of SOC sequestered among 
the three NT management systems.

The absolute amount of C in the soil pro-
file was different among the three MLRAs, 
but the relative change in SOC due to 
management did not differ among MLRAs 
(figure 3). The main effect of greater SOC 
sequestration rates with NT systems than 
with CT (table 3) did not differ significantly 
among MLRAs (P = 0.28). The interaction 
test used five-year rates of SOC seques-
tration as observations. Mean ± standard 
deviation among the five-year rates was  
0.00 ± 0.22 Mg ha-1 yr-1 (-1 ± 151 lb ac‑1 
yr-1) under CT cotton, 0.51 ± 0.65 Mg 
ha-1 yr-1 (457 ± 500 lb ac-1 yr-1) under NT  
cotton/wheat cover, 0.52 ± 0.69 Mg ha‑1 
yr-1 (467 ± 547 lb ac-1 yr-1) under NT 
corn/wheat cover-cotton/wheat cover, and 
0.59 ± 2.43 Mg ha-1 yr-1 (527 ± 1961 lb  
ac-1 yr-1) under NT bermudagrass-corn/
wheat cover-cotton/wheat cover. A rela-
tively large variation in the SOC sequestration 
rate was observed in all four management  
systems, likely due to weather variations that 
may have affected crop production and soil 
organic matter decomposition. Particularly 
large variation was observed in the bermu-
dagrass-corn-cotton rotation. The mean and 
standard deviation of SOC sequestration 
rate under NT cotton and NT corn/wheat 
cover-cotton/wheat cover were similar to 
those reported for 96 observations of NT 
versus CT in 10 ± five-year studies across 
the southeastern USA region (0.42 ± 0.46 
Mg ha-1 yr-1; Franzluebbers, 2005). Therefore, 
simulation of SOC sequestration with EPIC 
was generally consistent with field-based 
data. Whether management systems could 
maintain these high SOC sequestration rates 
for a 50-year period rather than the 10 ± 5 
year periods of actual field measurements is 
still questionable and needs to be answered 
with long-term field experimentation.

EPIC simulated very large SOC seques-
tration in the bermudagrass phase of the 
bermudagrass-corn-cotton rotation and large 
declines immediately thereafter (figure 3). The 
large decline in SOC following termination 
of pasture was unrealistic (Garcia-Prechac et 
al. 2004), since crops were managed under 
no tillage. Although forage management sys-
tems have shown potential for high SOC 
sequestration in the southeastern USA (1.03 
± 0.90 Mg ha-1 yr‑1; Franzluebbers 2005), the 
simulated rate of SOC sequestration dur-
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Table 2
Management characteristics for 50-year simulations by the EPIC model in each of the three major land resource areas and four management  
systems.

	 	 Date of operation

Management operation	 Blackland Prairie	 Coastal Plain	 Southern Piedmont

Monoculture cotton with conventional tillage
Fertilizer/plant cotton (150 kg N, 37 P ha-1)	 May 25	 May 5	 Apr. 25
Cultivate	 Jun. 15	 Jun. 10	 Jun. 10
Harvest cotton	 Nov. 15	 Oct. 25	 Oct. 30
Offset disk	 Nov. 15	 Nov. 5	 Nov. 5
Tandem disk	 Nov. 30	 Nov. 30	 Nov. 30
Rotation repeated yearly

Cotton/wheat cover crop with no tillage (NT)
Cut/bale wheat	 May 20	 May 1	 Apr. 20
Fertilize/plant cotton (150 kg N, 37 P ha-1)	 May 25	 May 5	 Apr. 25
Harvest cotton	 Oct. 25	 Oct. 30	 Oct. 30
Fertilize/plant wheat (56 kg N ha-1)	 Oct. 30	 Oct. 30	 Nov. 5
Rotation repeated yearly

Corn/wheat cover (4-year)–cotton/wheat cover (4-year) with NT
Years 1–4: Cut/bale wheat	 Apr. 25	 Apr. 10	 Mar. 25
Fertilizer/plant corn (168 kg N, 37 P ha-1)	 Apr. 30	 Apr. 15	 Apr. 1
Harvest corn	 Sep. 5	 Sep. 1	 Aug. 5
Fertilizer/plant wheat (56 kg N ha-1)	 Sep. 10	 Sep. 10	 Oct. 5
Years 5–8: Cut/bale wheat	 Apr. 15	 May 1	 Mar. 25
Fertilize/plant cotton (150 kg N, 25 P ha-1)	 May 25	 May 5	 Apr. 25
Harvest cotton	 Nov. 15	 Oct. 25	 Oct. 30
Fertilize/plant wheat (56 kg N ha-1)	 Nov. 20	 Oct. 30	 Nov. 5
Rotation repeated every 8 years

Bermudagrass (5-year)–corn/wheat cover (5-year-cotton/wheat cover (5-year) with NT
Year 1: Fertilize/plant bermudagrass (80 kg N, 37 P ha-1)	 Mar. 15	 Mar. 15	 Mar. 15
Cut bermudagrass	 Jun. 15	 Jun. 15	 Jun. 15
Fertilize bermudagras (50 kg N ha-1)	 Jul. 15	 Jul. 15	 Jul. 15
Cut bermudagrass	 Aug. 15	 Aug. 15	 Aug. 15
Year 2: Fertilize bermudagrass (80 kg N ha-1)	 Mar. 15	 Mar. 15	 Mar 15
Cut/bale bermudagrass	 Apr. 30	 Apr. 30	 Apr. 30
Fertilize bermudagrass (50 kg N ha-1)	 May 1	 May 1	 May 1
Cut/bale bermudagrass	 Jun. 15	 Jun. 15	 Jun. 15
Fertilize bermudagrass (50 kg N ha-1)	 Jun. 20	 Jun. 20	 Jun. 20
Cut/bale bermudagrass	 Aug. 1	 Aug. 1	 Aug. 1
Fertilize bermudagrass (50 kg N ha-1)	 Aug. 15	 Aug. 15	 Aug. 15
Years 3–5: Fertilize bermudagrass (80 kg N ha-1)	 Mar. 15	 Mar. 15	 Mar. 15

Initiate grazing of bermudagrass	 Apr. 15	 Apr. 15	 Apr. 15
Fertilize bermudagrass (80 kg N ha-1)	 Jun. 15	 Jun. 15	 Jun. 15
Fertilize bermudagrass (50 kg N ha-1)	 Aug. 15	 Aug. 15	 Aug. 15
End grazing of bermudagrass	 Sep. 15	 Sep. 15	 Sep. 15
Years 6–10: Culture of corn with NT as above

Years 11–15: Culture of cotton/wheat with NT as above

Note: Rotation repeated every 15 years.
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Figure 3
Simulated soil organic carbon during 50 years by the EPIC model in three major land resource 
areas as affected by four management systems.
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ing the bermudagrass phase of 6.06 ± 0.94 
Mg ha-1 yr-1 (2.7 ± 0.4 ton ac-1 yr-1) was 
larger than expected and was not justified 
by experimental evidence. Therefore, simu-
lation of SOC under forage management 
systems should be re-evaluated in EPIC v. 
3060 to produce more accurate predictions. 
The SOC module of EPIC v. 3060 was 
tested against data collected in various loca-
tions and management conditions (Gassman 
et al. 2004; Izaurralde et al. 2006), but most 
of these conditions were under cropping sys-
tems. Calibration of the model appears to be 
necessary for predicting SOC sequestration 
in long-term forage management systems 
and for locations other than the few already 
tested. Calibration could provide more accu-
rate prediction of variables, such as biomass 
production, that would influence the amount 
of SOC sequestered. The calibration process 
could also identify sensitive parameters, such 
as residue decomposition rates, that influence 
SOC accumulation with time. Parameter 
adjustments would then have implica-
tions for transfer of results across a region 
(Abrahamson et al. 2005).

Efforts are currently underway to test 
EPIC v. 3060 as a decision-making tool for 
C management based on remotely sensed 
residue management and tillage practices 
in the midwestern USA (NASA 2005).  
A similar effort would be useful in por-
tions of the southeastern USA to verify that  
EPIC could accurately simulate long-term 
changes in SOC throughout the entire 
southeastern USA.

Soil Conditioning Index Prediction of Soil 
Organic Carbon Change and Relationship to 
EPIC Predictions. The SCI predicted that 
SOC would decline with time under CT 
and increase with time under all three NT 
management systems (table 3). The SCI also 
suggested that including five years of pas-
ture in the cropping system would lead to 
greater SOC than simpler NT crop rotations 
(P = 0.10). These results were qualitatively 
consistent with the predictions from EPIC, 
although EPIC simulation of SOC seques-
tration was not statistically different between 
NT rotation systems.

From the four management systems on 
three MLRAs, SCI was linearly related to 
SOC sequestration simulated by EPIC (figure 
4). The greatest deviation from this relation-
ship was in the bermudagrass-corn/wheat 
cover-cotton/wheat cover system. Excluding 
this management system, the best fit between 
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Table 3
Estimates of soil organic carbon (SOC) sequestration (0 to 2 m depth) during 50 years of simulation by the EPIC model and the SCI, averaged across 
three major land resource areas (i.e., Blackland Prairies, Coastal Plain, and Southern Piedmont).

	 EPIC	 SCI

	 Linear rate of SOC	 Total quantity of SOC
	 sequestration	 sequestration	 Unit-less
Management system	 (Mg ha-1 yr-1)	 (Mg ha-1)	 relative change

(1) CT cotton	 –0.03	 –1.5	 –1.07
(2) NT cotton/wheat cover	 0.39	 20.1	 0.38
(3) NT corn/wheat cover–cotton/wheat cover	 0.49	 25.5	 0.50
(4) NT bermudagrass–corn/wheat cover–cotton/wheat cover	 0.50	 35.3	 0.80

Analysis of variance	 	 Pr > F
CT vs. NT systems (1 vs. 2-3-4)	 0.03	 0.008	 <0.001
NT ungrazed vs. grazed (2-3 vs. 4)	 0.77	 0.16	 0.10
NT monoculture vs. rotation (2 vs. 3)	 0.68	 0.57	 0.58

EPIC and SCI was an exponential growth 
function that suggested SOC sequestration 
was insensitive to SCI ≤ 0, but increased dra-
matically with values > 0. Hubbs et al. (2002) 
presented linear relationships between the 
percent C change in soil and SCI. Although 
the simulation results reported here were 
in general agreement with the relationships 
in Hubbs et al. (2002), there is a need for 
further evaluation of SCI since both lin-
ear and non-linear relationships with SOC 
sequestration appear to be possible, reflecting 
unexplained sources of variation. An even 
greater need is to validate SCI against actual 
field data of SOC sequestration under a wide 
range of agricultural systems with long-term 
management. The relationships reported in 
Figure 4 should not be considered quanti-
tative or be used as a predictive tool, since 
SOC sequestration estimates were obtained 

only with EPIC v. 3060 and not actual field 
data.

EPIC Simulations of Crop Yield and 
Water-Use Efficiency (WUE). Cotton lint 
yield was greater under CT than under NT 
management systems when averaged across 
MLRAs (table 4). There were no differences 
in simulated lint yield among the three NT 
management systems. Cotton lint WUE was 
not different among any of the treatments, 
averaging 2.4 kg mm-1 (134 lb in-1) (table 
4). No tillage was able to reduce evapora-
tion from soil compared with CT, resulting 
in similar WUE, despite a difference in yield. 
Simulations of cotton lint yield were rela-
tively high (mean of 1.41 Mg ha-1 under  
CT and 1.24 Mg ha-1 under NT systems) 
compared with actual field observations of 
0.98 ± 0.30 Mg ha-1 (875 ± 268 lb ac-1) 
under CT and 1.05 ± 0.22 (938 ± 196 lb ac‑1) 

under NT (Johnson et al. 2001; Endale et al. 
2002; Busscher and Bauer 2003; Schomberg 
et al. 2003). However, relative differences 
among treatments were expected to occur to 
a similar extent, irrespective of absolute val-
ues. Calibration of EPIC to specific growing 
conditions in these environments appears to 
be necessary to improve yield estimates.

Simulation of 12% ± 6% lower cotton 
lint yield with NT management systems 
compared with CT was different than most 
reported field observations. In a review of till-
age impacts on soil and crop responses in the 
southeastern USA, cotton lint yield across 18 
pairs of observations (CT vs NT) averaged 
1.1 Mg ha-1 (982 lb ac-1) and was not dif-
ferent between tillage systems (Franzluebbers 
2005). Seed cotton yield across nine pairs 
of observations was 2.59 Mg ha-1 (2,312 lb 
ac-1) under CT and 2.69 Mg ha-1 (2,402 lb 

Table 4
Mean cotton lint yield, corn grain yield, and water-use efficiencies averaged across three major land resource areas (i.e., Blackland Prairie, Coastal 
Plain, and Southern Piedmont) during 50 years of simulation by the EPIC model.

	 Yield (Mg ha-1)	 Water-use efficiency (kg mm-1)

Management system	 Cotton lint	 Corn grain	 Cotton lint	 Corn grain

(1) CT cotton	 1.41	 NA	 2.45	 NA
(2) NT cotton/wheat cover	 1.15	 NA	 2.29	 NA
(3) NT corn/wheat cover–cotton/wheat cover	 1.32	 7.53	 2.41	 18.5
(4) NT bermudagrass–corn/wheat cover–cotton/wheat cover	 1.24	 6.90	 2.34	 17.0

Analysis of variance	 Pr > F
CT vs. NT systems (1 vs. 2-3-4)	 0.06	 NA	 0.22	 NA
NT ungrazed vs. grazed (2-3 vs. 4)	 0.96	 0.04	 0.90	 0.24
NT monoculture vs. rotation (2 vs. 3)	 0.11	 NA	 0.21	 NA
Note: NA = not applicable.
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Figure 4
Soil organic carbon sequestration simulated by the EPIC model in the surface 2 m of soil on a 
yearly basis (top) and throughout a 50-year period (bottom) in relationship with the SCI.
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ac‑1) under NT. Terra et al. (2005) reported 
17 ± 9% greater seed cotton yield under NT 
than under CT. The negative effect of NT 
management on simulated cotton lint yield 
during 50 years of management supports 
the need for calibration of EPIC v. 3060 to 
specific conditions at a site to account for 
differences among management systems. 
Cotton lint WUE from a silt loam soil in 
Alabama was 3.0 ± 1.4 kg mm-1 (167 ± 78 
lb in-1) under both CT and NT, when using 
precipitation from May to September in  
calculations (Reddy et al. 2004). On a  
loamy sand in South Carolina, cotton lint 

WUE was 1.3 ± 0.3 kg mm-1 (73 ± 17 lb 
in-1) under both CT and NT (Busscher and 
Bauer 2003). On a silt loam in Mississippi, 
cotton lint WUE was 2.5 ± 0.8 kg mm‑1 
(139 ± 45 lb in-1) under CT and 2.2 ± 
0.6 kg mm-1 (123 ± 33 lb in-1) under NT 
(Pettigrew and Jones 2001). On a sandy loam 
soil in Alabama, seed cotton WUE was 5.1 
± 2.0 kg mm-1 (285 ± 112 lb in-1) under  
CT and 5.3 ± 2.0 kg mm-1 (296 ± 112 lb 
in-1) under strip tillage (Gordon et al. 1990). 
On a silt loam in Mississippi, seed cotton 
WUE was 4.2 ± 1.4 kg mm-1 (234 ± 78 
lb in-1) under CT and 4.9 ± 1.9 kg mm‑1 

(273 ± 106 lb in-1) under NT (Triplett et 
al. 1996). The measured effect of tillage  
system on WUE in cotton has generally been 
relatively small and inconsistent, and there-
fore, simulations of similar cotton WUE 
efficiency between CT and NT systems dur-
ing 50 years were reasonable compared with 
available field data.

Simulated corn grain yield was 9% greater 
under the NT corn/cotton rotation than 
under the NT pasture-crop rotation system 
(table 4). Simulated corn grain yield produc-
tion was well within observed production 
levels of 6.7 ± 1.8 Mg ha-1 (107 ± 29 bu  
ac-1) under CT and 7.6 ± 1.7 Mg ha-1  
(121 ± 27 bu ac-1) under NT on soils in the 
same three MLRAs (Hargrove 1985; Karlen 
et al. 1989; Wagger and Denton 1992; Torbert 
et al. 2001; Terra et al. 2005). Water-use effi-
ciency of corn was not different between the 
two rotations, averaging 17.6 ± 1.4 kg grain 
mm-1 (18 ± 1 bu in-1) precipitation. On a clay 
soil in Texas, corn grain WUE was 8.8 ± 4.6 kg 
mm-1 (9 ± 5 bu in-1) under CT and 11.5 ± 3.5 
kg mm-1 (11 ± 3 bu in-1) under NT (Torbert 
et al. 2001). Under dryland conditions in 
Kansas, corn grain WUE was 10.0 ± 4.9 kg  
mm-1 (10 ± 5 bu in-1) under CT and 12.8 
± 4.3 kg mm-1 (13 ± 4 bu in-1) under NT 
(Norwood 1999). On a fine sandy loam in 
Alabama, corn grain WUE was 20.1 ± 6.3 
kg mm-1 (20 ± 6 bu in-1) under continuous 
corn and 21.3 ± 6.2 kg mm-1 (21 ± 6 bu 
in-1) under wheat/soybean/corn (Edwards et 
al. 1988).

Effect of Altered Crop Yield Prediction on 
Soil Organic C. By lowering the threshold 
heat unit level from 2800 to 2000, cotton 
lint yield increased 36% from a mean of  
1.28 Mg ha-1 to 1.75 Mg ha-1 (1,143 to 1,562 
lb ac-1), averaged across treatments (data 
not shown). However, SOC sequestration 
declined from a mean of 0.34 Mg ha-1 yr-1 
to 0.28 Mg ha-1 yr-1 (304 to 250 lb ac-1 yr-1). 
Although conversion of crop-derived C into 
SOC cannot be treated as a direct function of 
crop yield, the small decline in SOC seques-
tration with a relatively large increase in crop 
yield suggests that simulated SOC sequestra-
tion values may be less variable across a range 
of environments than crop yield.

Summary and Conclusions
Simulations with the uncalibrated EPIC v. 
3060 strongly suggested that no-tillage man-
agement of cropland in the southeastern USA 
would lead to significant sequestration of soil 
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organic C compared with conventional-till-
age management. Increasing crop rotation 
diversity did not significantly alter simulated 
soil organic C sequestration and cotton lint 
water-use efficiency. The SCI also indicated 
that soil organic C sequestration would be 
greater with no-tillage management than 
with conventional-tillage management, but 
in addition suggested greater soil organic C 
sequestration with a more diverse crop rota-
tion system than with continuous cotton 
under no tillage. With the limited number of 
simulations (12), the SCI was comparable to 
EPIC-simulated soil organic C sequestration 
during 50 years. Relationships suggested that 
soil organic C sequestration would be highly 
significant with relatively small changes in 
positive values of SCI. Long-term changes 
in soil organic C appeared to be reasonably 
predicted with both EPIC v. 3060 and SCI. 
Discrepancies in cotton lint yield between 
model-simulated (EPIC v. 3060) and empir-
ical data with regards to conventional and 
conservation tillage suggest that calibration 
is needed for detailed, process-based scien-
tific investigation in the southeastern USA. 
The simplicity and cost-effectiveness of SCI 
should be of great importance to land man-
agers and policy makers for making decisions 
to improve soil quality for future use, but 
there is still an urgent need for long-term, 
field-based data to improve both EPIC and 
SCI as prediction tools.
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